

AHRQ Present on Admission (POA) – Technical Overview

Jeffrey Geppert, EdM, JD, Battelle Memorial Institute Warren Strauss, ScM, Battelle Memorial Institute John Bott, MSSW, MBA, Contractor, Agency for Healthcare Research and Quality *May14, 2010 2:00 to 3:30 pm ET Toll Free: 1-*877-939-8827; Passcode: AHRQ POA

AHRQ QI 2010 webinars to date

January 12 and 14

- AHRQ QIs, Version 4.1 – Overview

January 25 and 27

- AHRQ QIs, Version 4.1 – Additional Detail

May 12

 AHRQ QIs use of Present on Admission – User Overview

May 14

 AHRQ QIs use of Present on Admission – Technical Overview

POA Overview (5 minutes)

– Approach

POA Model Steps (25 minutes)

- Statistical Notation
- Goal
- Assumptions
- Bayesian Approach
- Data Imputation
- Markov chain Monte Carlo (MCMC) Analysis
- Software Tool (5 minutes)
- Example (5 minutes)
- Discussion (30-45 minutes)

POA Overview: Approach

Two sets of algorithms needed to incorporate POA information

- Develop response variables and comorbidity factor covariates in the presence of POA data
 - Less measurement error thereby more accurate and based on fewer assumptions
- 2. Develop response variables and comorbidity factor covariates in the **absence** of POA data
 - Use observed POA data to estimate probability of POA for response and comorbidity factors for patients that do not have POA data
 - Provide hospital with risk-adjusted rate that would be "most likely" had they collected POA data

Observed and estimated data are used to develop the final AHRQ QI models

POA Model Steps: Statistical Notation

- Y_{ij} = PSI Indicator for the jth patient in the ith hospital
 - Y_{ij} =1 if the patient experiences the adverse health effect, 0 otherwise
 - P_{ij} =Indicator of whether the adverse health effect (represented by Y_{ij}) is present on admission determined from the POA data.
 - Note that P_{ij} will equal 0, by definition, if Y_{ij} =0, but that P_{ij} could equal either 0 or 1 when Y_{ij} =1. P_{ij} is not observed on everyone.
- Z_{ij} = Vector of explanatory variables associated with the jth patient in the ith hospital, based on administrative records with no POA data.
 - Z_{ij} is observed for everyone.

X_{ij} =Vector of improved explanatory variables associated with the jth patient in the ith hospital, based on administrative records with POA data.

– X_{ij} is not observed on everyone.

POA Model Steps: Goal

Our goal is to predict: $\Pi_{ij} = \Pr(Y_{ij} = 1 | P_{ij} = 0, X_{ij})$

POA Model Steps: Assumptions

- Assume: $Logit(\pi_{ij}) = X_{ij}\beta_Y + \delta_{Y,i}$

Subcomponent of the model is prediction of : $r_{ij} = \Pr[P_{ij} = 1 | X_{ij}]$

- Assume: $Logit(r_{ij}) = X_{ij}\beta_P + \delta_{P,i}$

POA Model Steps: Assumptions (cont.)

- Account for the anticipated withinhospital correlation among Y_{ij} responses, using a Generalized Estimating Equations (GEE) Approach
 - A random effects approach was considered, but was discarded because multiple observed hospitals with no cases were compromising the random effect estimates

Likelihood Equations

If POA data are available (and hence x_{ij} and P_{ij} are observed), we maximize the following likelihood, where r_{ij} is the probability that P=1, given the observable characteristics of X.

$$L_{ij} = \left(\pi_{ij}^{1-P_{ij}}\right)^{Y_{ij}} \left(1 - \pi_{ij}^{1-P_{ij}}\right)^{1-Y_{ij}} r_{ij}^{P_{ij}} (1 - r_{ij})^{1-P_{ij}} [X_{ij}, Z_{ij}] \quad (i, j) \in \Omega,$$

When x_{ij} and/or P_{ij} is not observed, we need to integrate/sum over the missing data P and X. Information about both of these may be obtained in the variables Z that are generally observed.

$$L_{ij} = \int_{X_{ij}} \sum_{P_{ij}} \left(\pi_{ij}^{1-P_{ij}} \right)^{Y_{ij}} \left(1 - \pi_{ij}^{1-P_{ij}} \right)^{1-Y_{ij}} r_{ij}^{P_{ij}} (1 - r_{ij})^{1-P_{ij}} g(X_{ij}, Z_{ij}) \quad (i, j) \notin \Omega,$$

Bayesian Approach

Because X_{ij} can be >100, the integral equation is unfeasible To avoid calculating the integral Use the following approach: [θ|W]∝[W|θ][θ]

If direct calculation of the likelihood is unfeasible can use MCMC sampling

Data Estimation

Combined use of Bayesian approach and other sampling techniques is convenient for missing data

If $\{\theta^{(j)}, W^{(j)}\} j = 1, ..., n$ is a random sample from $[\theta, W' | W] \propto [W, W', \theta]^{\xi}$ then $\{\theta^{(j)}\} j = 1, ..., n$ is a random sample from $[\theta | W] \propto [W, \theta] = \int_{W'} [W, W', \theta]$

Allows sampling of augmented posterior distribution [W, W', θ] rather than integration over missing data

Model Fitting Approach using MCMC Overview

Multiple pre-processing steps prior to fitting

- Ensures data are formatted and sorted as anticipated
- Eliminates columns of Z (and X) that are linearly dependent with each other
- Allows for multiple P variables (i.e., P_1 , P_2 , P_3) where P=Max(P_k)

MCMC Approach

- 1. Establish X|Z using a series of 2x2 tables, and Establish P|X using a logistic regression modeling approach
- Impute values of X where missing using X|Z, and impute values of P where missing using P|X – creating an MCMC simulated analysis dataset
- **3.** Establish Y|X,P=0 by fitting the logistic regression model Y|X for the subset of the MCMC simulated analysis dataset in which P=0.
 - Repeat steps 2-3 many times until parameter estimates reach convergence

Analysis module fits the models two ways – using a Naïve simple logistic regression modeling approach, and using a GEE approach that accounts for within-hospital correlation

Model Fitting Approach using MCMC Overview (cont.)

Begin with

 $\begin{bmatrix} Y, P, X, Z, P', X' \mid X' \mid \beta_Y, \delta_Y, \beta_P, \delta_P, \beta_Z \end{bmatrix} = \begin{bmatrix} X \mid X' \end{bmatrix} \begin{bmatrix} P \mid P' \end{bmatrix} \times \begin{bmatrix} Y, P', X'Z \end{bmatrix} \beta_Y, \delta_Y, \beta_P, \delta_P, \beta_Z$

P' and X' indicate the "true process, such that Y = Y' and Z = Z' always, while for P and X, we set

 $[X \mid X'] [P \mid P'] = \prod_{(i,j)\in\Omega} \delta(X_{ij} - X'_{ij}) \prod_{(i,j)\in\Omega} \delta(P_{ij} - P'_{ij})$

For the process model:

 $\begin{bmatrix} Y, P', X', Z \mid \beta_Y, \delta_Y, \beta_P, \delta_P, \beta_Z \end{bmatrix} = \prod_{ij} \begin{bmatrix} Y_{ij} \mid P'_{ij}, X'_{ij}, \beta_Y, \delta_{Y,i} \end{bmatrix}$ $\times \prod_{ij} \begin{bmatrix} P' \mid X'_{ij}, \beta_P, \delta_{P,i} \end{bmatrix}$ $\times \prod_{ij} \begin{bmatrix} X' \mid Z_{ij}, \beta_{X,ij} \end{bmatrix}$ $\times \begin{bmatrix} Z \end{bmatrix}$

with
$$[Y_{ij}|P'_{ij},\beta_{Y},\delta_{Y,i}] = (\pi_{ij}^{1-P'_{ij}})^{Y_{ij}}(1-\pi_{ij}^{1-P'_{ij}})^{1-Y_{ij}}$$

 $[P'_{ij}|X'_{ij},\beta_{P}\delta_{P,i}] = r_{ij}^{P'_{ij}}(1-r_{ij})^{1-P'_{ij}}$
 $[X'_{ij}|Z'_{ij},\beta_{X,ij}] = s_{ij}^{Z_{ij}}(1-s_{ij})^{1-Z_{ij}}$

• Where π_{ii} and r_{ii} and $Logit(s_{ij}) = \beta_{X,ij0} + Z_{ij}\beta_{X,ij1}$

- Large number of parameters in the augmented likelihood and high percentage of missing P and X data, MCMC sampling may be unstable
 - Not representative of posterior parameter distribution
 - Need simplified model
 - Use logistic regression on subset of sample that have no missing data to consider them fixed during MCMC simulation
 - Gibbs (instead of Metropolis-Hasting)

Consider normal asymptotic expansion for fixed effects of logistic regression

$$\prod_{ij} (\pi_{ij}^{1-P'ij})(1-\pi_{ij}^{1-P'ij})^{1-Yij} \approx N(\beta_{Y},\delta_{Y}); (\hat{\beta}_{Y}\hat{\delta}_{Y}), \hat{\Sigma})$$

Run logistic regression on left hand side of equation above to create a set of parameters for normal function of right hand side of equation

To account for random hospital effects generalized estimated equations (GEE) theory is used to account for withinhospital correlation:

$$\prod_{ij} (\pi_{ij}^{1-P'ij})^{Yij} (1-\pi_{ij}^{1-P'ij})^{1-Yij} \approx N(\beta_{Y}; \hat{\beta}_{GEE}, \hat{\Sigma}_{GEE})$$

In sum,

- Use component-wise Metropolis-Hasting sampler, draw "true process" variables P' and X' according to augmented likelihood (use both data-model equations and process-model equations for estimation)
- Use component-wise Gibbs sampler, draw fixed effect β_{Y} using a GEE normal approximation

Linear Dependence

Use singular value decomposition (SVD) to decompose the matrices: X^TX and Z^TZ using the kernel of matrix M = kernel of M^TM.

Separation

- MLE approach produces infinite estimates for certain fixed effects
- Use regularization term: ridge regression
- "Flat" normal prior distribution:

 $[\beta_Y] = N(\beta_{Y;0}, I/\lambda)$

Estimate doesn't affect β_Y but stabilized the solution
 Improves instability due to residual collinearity in the data (i.e., not removed by SVD)

Software Development

Two Modules have been developed that implement the POA-Adjusted Quality Indicator Models

- Analysis Module for fitting National data from the HCUP
 - Provides parameter estimates and associated standard errors from Naïve and GEE-based MCMC models:

Y Z	Similar to previously developed AHRQ Models
ΡΙΧ	Based on data where X is Observed
Y X, P=0	Based on data where X & P are Observed
Y X, P=0 (MCMC)	Based on Imputed data across entire dataset

 Prediction Module for applying Model Results to patient records from a select Hospital (or group of Hospitals)

Uses consistent MCMC approach to impute values of P and X (where missing) prior to applying parameter estimates – averaging the predicted values of Y over many simulations

- C++ program that implements MCMC simulations (patented by Battelle)
 Reads comma separated file containing the Y, P, X and Z data
- Eliminates zero and linearly dependent columns
- Performs GEE regression analyses on the distributions noted on last slide

Software Development (cont.)

- Once coefficients fitted as appropriate performs standard and GEE analysis through MCMC with data estimation of the distribution [Y|P=0,X]
- With more POA indicators a univariate value is calculated

GEE regression (not MCMC simulation) "model standard errors" and "empirical standard errors" are calculated

- After analysis, hospital predictions are calculated
- Software inputs: data filename; number of POA indicators; pathname of folder to store results; result filenames (standard regression analysis, GEE regression analysis, standard prediction results and GEE prediction results); subfolders to store various analytic files; analysis values, parameters and analytic steps; and, name of file to store log

Prediction Module

 The software tool can perform hospital aggregate predictions and individual predictions based on previous analyses

Postoperative Sepsis

	Discharges without POA Data	Discha	Discharges with PO	
tpps13/ qpps13 (P)	Missing	0	1	Total
0	549,614	248,629	0	798,243
1	8,208	2,312	1,436	11,956
Total	557,822	250,941	1,436	810,199
0	98.53%	98.51%	0.00%	98.51%
1	1.47%	0.92%	0.57%	1.49%
Total	100.00%	99.43%	0.57%	100.00%

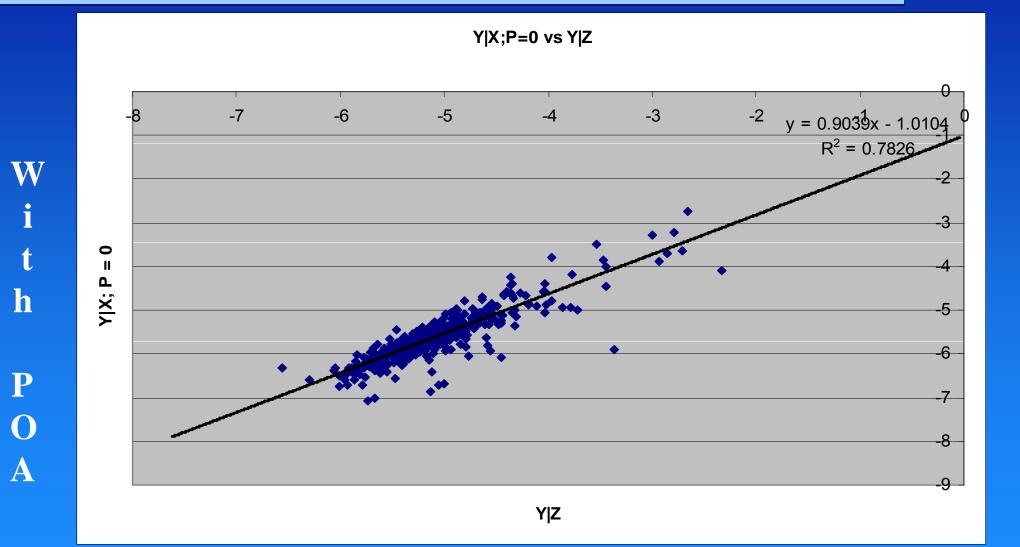
Table B2. Number and Percent of Discharges by Flag

Source: HCUP State Inpatient Databases (SID). Healthcare Cost and Utilization Project (HCUP). 2007. Agency for Healthcare

Research and Quality, Rockville, MD. <u>www.hcup-us.ahrq.gov/sidoverview.jsp</u>.

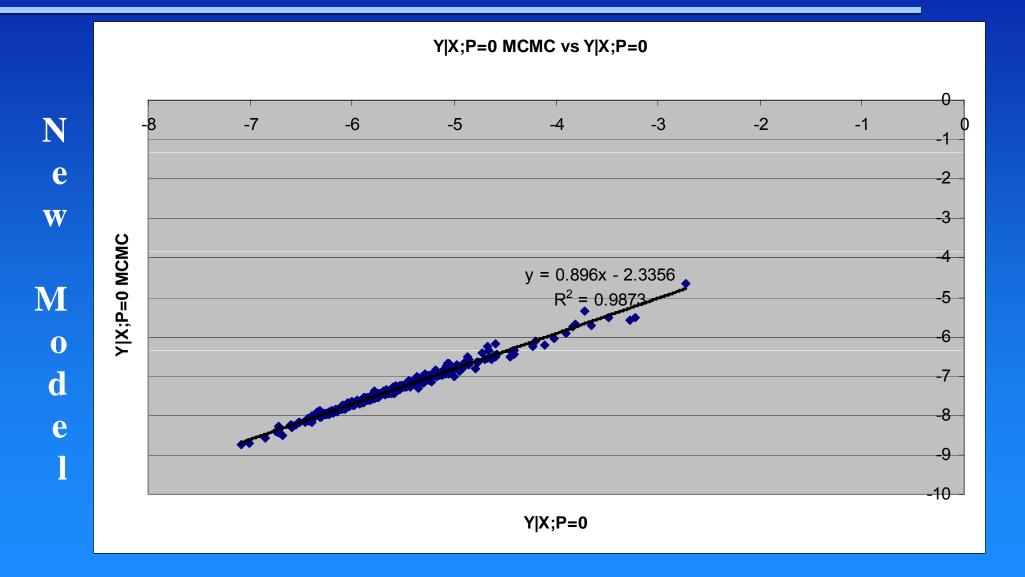
Note: tpps13 = inclusion in numerator; qpps13 = inclusion in denominator; (P) = cases flagged in outcome of interest excluded from population at risk because outcome is POA; 0 – does not meet inclusion; 1 = meets inclusion.

Results: Postoperative Sepsis (current approach)



Without POA

Results: Postoperative Sepsis (Alternative approach)



With POA

Some Potential Next Steps

- Continue to refine the AHRQ QI numerator, denominator and risk factor definitions
 - Improve the sensitivity and specificity of the indicators
- Incorporate other tools to improve the coding of present on admission
 - Publicly available diagnostics on the accuracy of POA coding

Discussion

For your consideration:

- Did this webinar meet your needs?
 - Content? Scope?
- How will the information presented be useful to you?
- Is there anything we did not cover or didn't address in enough detail for you?
- Your questions:
 - Questions about what you heard today?
 - If we don't answer your question today, then we will post a response on the AHRQ QI website

AHRQ QIs

Web site: <u>http://qualityindicators.ahrq.gov/</u>

- AHRQ QI documentation and software are available at the AHRQ QI web site
- Present on Admission White Paper:
 - <u>http://www.qualityindicators.ahrq.gov/downloads/webinars/</u> <u>Using%20Present%20on%20Admission.pdf</u>

Staff:

- Mamatha Pancholi <u>Mamatha.Pancholi@ahrq.hhs.gov</u>
- John Bott John.Bott@ahrg.hhs.gov